Nanoscale Magnesium as a Hydrogen Storage Material
نویسنده
چکیده
منابع مشابه
The effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders
Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...
متن کاملThe effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders
Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...
متن کاملهیدروژناسیون ترکیب Mg-Ni آسیاب شده
Magnesium hydride is one of the hydrogen storage materials in solid state that is taken into consideration due to its high storage capacity. This paper investigates the adsorption of magnesium and nickel catalyst combination in 473 K at 2.0 and 3.5 Mpa. A planetary ball mill is used in order to produce fine particles and to increase adsorption. A volumetric method (Sievert) is used for hydrogen...
متن کاملHydrogen storage in magnesium clusters: quantum chemical study.
Magnesium hydride is cheap and contains 7.7 wt % hydrogen, making it one of the most attractive hydrogen storage materials. However, thermodynamics dictate that hydrogen desorption from bulk magnesium hydride only takes place at or above 300 degrees C, which is a major impediment for practical application. A few results in the literature, related to disordered materials and very thin layers, in...
متن کاملHydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying
Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010